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Aim & Motivation Problem Formulation

e Knowledge Distillation Setup: The teacher network, a heatmap-based model, transfers knowledge to a
lightweight student network[1], which can be either a coordinate classification or regression model.
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Computing Science

eChallenge: High-accuracy 2D-HPE models are
resource intensive for real-time use, while lightweight
models are faster but less accurate.

e Global Filter Layers (GFL): The student network replaces self-attention modules with Global Filter Layers (GFL)[2],
which operate in the frequency domain. The input tokens X € R“*"*W " are transformed via a 2D-FFT 7(X) and a
learnable filter K is applied in the frequency space: G(X) =K ® T(X) The output is then returned to the spatial
domain using an inverse FFT: X =7 ' (G(X)) This reduces the computational complexity from O(HZW?)
traditional methods to O(HWlog, (HW)) significantly improving throughput.

eNeed for Lightweight Models: Devices with limited
computational power require efficient 2D-HPE models
that maintain performance.

*Knowledge Distil!ation: | By transferring knowledge e Dynamic and Static Weighting Strategies: We incorporate dynamic filters[3] in the GFL to reweight the low and
from complex to lightweight models, we can retain high-frequency components of the input. This dynamic filter K € R>W*F js parameterized with weights learned

high accuracy while reducing computational from an MLP layeras: K = K ® M (X) This allows for adaptive frequency reweighting based on the input image.
demands.

e Loss Function: The total loss function for the student model is computed as a combination of multiple terms,

*Solution: A distillation framework using Global Filter including the mean squared error (MSE) between the keypoint tokens of the teacher and student models (Lk), the

Layers (GFL) to reduce complexity, close the visual token loss (L), and additional terms for regression or coordinate classification models:
performance gap, and enhance speed. Liotal = Oilit + QoLyt + Ozlpm + QqLCe
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Figure A: Knowledge Distillation Approach (a) The pre-trained heatmap network acts as teacher providing visual and keypoint tokens as
knowledge to student networks. (b) indicates the student regression network that uses the similar transformer pipeline as teacher.(c)
represents the student coordinate classification method. (d) represents the global and dynamic weighting strategies used for the 2D-FFT
token mixer which is applicable for both the students

Results

Model | Backbone |Weights| f%lﬁh Dil; Elllil;::i:l;,% || Param.(M)(})| GFLOPs(}) (‘;.’;’;‘E% Model | Backbone |Weights|PCKh Eiﬁ:;;ﬁ: Param.(M)(]) | GFLOPs(/) {?ESE?}
GS 40.07 | 65.3(+25.23) 3.61 0.77 3325 ) GS 69.2 | 77.87(+8.67) 3.73 0.78 3668
] GD |48.97 | 76.0 (+27.03) 6.39 1.28 1560 GD | 77.48 |80.63 (+3.15) 6.51 1.28 1354
FFT GS |[71.90| 87.7 (+15.8) 11.25 7.13 645 FFT GS 88.13 |89.40 (+1.27) 11.37 7.13 717
HRNet-W32 — o7 81 [ 87.7 (+19.85) 12.03 764 525 ARNCEWI2 6D 8767 (8925 (+1.58)]  14.14 7.63 606
HRNet-W48| GS 71.0 | 87.9(+16.9) 20.3 12.9 425 HRNet-W48| GS 88.87 | 89.5(+0.63) 20.4 13 456
- 46.8 | 79.30(+32.5) 4.72 1.6 1481 - 78.42 | 81.94(+3.52) 4.84 1.60 1831
Attention | HRNet-W32 - 68.39 | 88.73 (+20.34) 12.36 7.95 506 Attention | HRNet-W32 - 88.83 [89.97 (+1.14) 12.48 7.96 597
HRNet-W48 72.8 | 88.61(+9.81) 214 13.8 367 HRNet-W48 89.07 | 90.3(+1.23) 21.5 13.8 396

Table A: Regression with Distillation on MPII. PCKh denotes PCKh@0.5(%) Table B: Coordinate Classification with Distillation on MPII. PCKh denotes PCKh@0.5(%)

e Qur approach establishes an effective method for making high-
performance 2D-HPE models more scalable and deployable in real-
world settings.

e The results demonstrate that lightweight models can be enhanced
without sacrificing significant accuracy, opening opportunities for
future improvements in real-time applications.

e Accuracy and Speed: The FFT-B-GS model achieves 89.4% PCKh@0.5 with an 18.26% increase in
speed, demonstrating GFL's balance of accuracy and efficiency.

e Dynamic Weighting: FFT-NB-GD shows a 27.03% accuracy boost, proving dynamic filters adapt
well to varying inputs while maintaining fast inference.
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